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ABSTRACT

High yields in the semiarid tropics cannot be achieved without soil fertility amendment,’
but there is a high risk that rainfali dcficits will prevent the realisation of yield gain
from higher fertility. Without a means of anticipating the "goodness” of the oncoming
scason, the best that a profil-secking farmer can do is to set a crop-limited yield
potential tailored for the Iypical scason. Such a sirategy unavoidably rcsults in fost
opportunities for high yicld in good scasons and wasted inpuls in poor seasons,

It is generally perceived that improved seasonal rainfall forecasting is needed for large
gains in efficiency of input allocations. Response Farming was developed in Bastern
Kenya to forecast season type using rules based on time of scason onset and early
cuntlative rainfall. Tactical agronomic responses, such as adjusiments in crop densities
and nitrogen fertiliser amounts which determine the crop yield ceiling and demands on
soil resources, are then possible,

Although reports on the development of Response Farming have tended Lo capture
the imagination of scientists, there is little information that quantifies the potential value
of the scheme to increase and stabilise agricultural production. Testing using a
numerically simufated system is feasible, and recent research in Kenya has adapted and
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validated the CERES-Maize model to predict yield in response to variation in water and
nitrogen supply, and for variable plant population densitics. In this paper, the model is
used to simulate maize yield for both long and short rainy seasons for 32 years at
Katumani Research Station, near Machakos, Kenya. A range of practices and strategies
are compared. These differ in the initial plant population and amount of fertiliser
applied and, when a forecasl is available, the timing and degrec of subsequent
adjustments.

A decision analysis approach was used, [irstly, to compare the efficacy of two seasonal
rainfall predictors in reducing uncertainty and, secondly, to compare the economic
performance of various input allocation strategies with and without forecast information,

Using Bayes theorem, Response Farming forecasts were shown to substantially reduce
within-season rainfall uncertainty. Economic comparisons of input strategies using
expected utility and mean-standard deviation analysis showed that: (i) the low input
strategy typical of small farms in the region is greatly inferior lo the optimal strategies
with or without a forecasl; (if) of the Response Farming strategies compared, the
optimal one used the highest inputs; and (iii) Response Farining strategies using tower
inputs were not superior to the optimal Sel strategy. Various explanations of the
suboptimality of current farming practice are explored, including possible weaknesses in
the analysis.

Recognising that farmers change their practices incremeatally, the resufts indicate that
the most important step is increased use of nitrogen fertifiser irrespective of seasonal
outlook.

These results demonstrate the synergy of cropping systems simulation and decision
analysis methods in the pursuit of improved farm management,
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Climatic Risk in Crop Production

INTRODUCTION

The efficiency with which land, capital, and labour are used in producing crops
in semiarid climates is reduced by the high probability that the yield opportunity
provided by chance rainfail in a given season will not match the yield potential
set by the farmer’s selection of crop, plant population, and soil fertility
amendment. In unexpected dry years, variable inputs are not fully utilised by
the crop and often exacerbate water deficits. In unexpected years of good water
supply, opportunities for high returns are forcgone. Without the ability to
predict the nature of the pending scason, cconomic benefits from
yield-improving technologies in risky climates will always be less than in more
reliable ones.

Scientific recognition that weather systems behave chaotically much of the
time, seems nof Lo have dampened expectations that useful seasonal forecasting
s feasible. Predictors based on empirical indices derived from readily-available
atmosphcric measurements, such as the Southern Oscillation Index, show
considerable promise for some regions (e.g. Nicholls 1986, 1991; Hammer and
Muchow 1991; Clewett ef al. 1991). An alternative approach, which relies on the
empirical relationship between rainfall received early in the season and eventual
{otal seasonal rainfall also shows promise in certain regions. The most notable
example of this latter type of predictor is "Response Farming" (Stewart 1988,
1991). When implemented for a region, Response Farming provides: (a) a
forecast of the potential of the pending growing season in time to influence
decisions that set yicld ceilings; and (b) a set of alternative recommendations for
all forecast contingencies. Since publication of a Response Farming scheme for
Eastern Kenya (Stewart and Hash 1982), the concept has aroused widespread

~e

interest among agricultural rescarch and development practitioners:—An
institution expressly for the promotion of Response Farming has been assisting
adaptation of the concepls in at lcast 18 countries (Stewart 1988). Response
Farming appeals to scientists because the problem it addresses is important, the
approach is intuitively sound, and the published data indicate that correct
forecasts of season Lype can be made with sufficicnt frequency to appear Lo be
ruseful'. However, the economic value of a Response Farming scheme for a
given location has not been adequately assessed, and cannot be inlerred from
farmer behaviour because, as a scheme, it is yet to be adopted by farmers
(Stewart 1991).

This paper is part of an cvaluation of the Response Farming scheme
developed by Stewart and co-workers for the Machakos-Kitui district in Eastern
Kenya, Mean annual rainfall in this region ranges from 500 to 700 mm falling
in two short growing seasons, termed locally the "long rains” and the “short
rains”. The farming system is characterised by production of maize and
maize-pulse mixtures in both growing scasons, Under rapidly-increasing
population pressure, land-use intensity of croplands approaches continuous
cultivation, and one consequence is depletion of soil fertility. Although responses
to nitrogen and, to a lesser extent, phosphorus are generally dramatic in good
seasons, little fertiliser is used (Rukandema ef al. 1981).
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Assessing Value of Seasonal Rainfall Predictor

" There is evidence that a major disincentive to the use of fertiliser is the
high risk of low rainfall and resultant poor crop response to fertiliser (Ockwell
et al. 1991). Reduction of this risk is central to Response Farming,

The economic value of a climatic forecast depends on: (i) the accuracy and
timeliness of the forecast; and (ii) the degree of optimality of the decision made
on the basis of the forecast (Krzysztofowicz 1983). In an evaluation of Response
Farming in this paper, we firstly quantify the effect of specified forecasts on the
degree of uncertainty faced by the farmer., We then identify the strategy that
becomes optimal when such information is available, and, finally, we quantify
the value of such information.

RESPONSE FARMING AS A CONCEPT
The Forecast

Fundamental to the derivation of a forecast in Response Farming is the
empirical relationship between the relative earliness of a rainy season and
determinants of its potential for supporting crop production, i.e. the season
length and the amount of rainfall received (Fig. 1). Positive correlations have
been reported for a wide range of tropical and Mediterranean locations (Stewart
1988). The apparent recason for this relationship is that the date of cessation of
rainy seasons is less variable than that of onsct, making scason duration
dependant mainly on the latter. A rule for classifying the onset of a rainy season
as "early" or "late" is derived from historical rainfall records, Fig. 1 is divided
into early and late segments providing rules for classification of season type
(Predictor I) for both long and short rains (P, Table 1a).

A second predictor (P} developed in Kenya depends additionally on the
cumulative amount of rainfall received early in the season. The correlation
between this and the total rainfall received in the specified crop growing season
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depends largely on auto-correlation. As the length of the early period is
extended, it represents a larger fraction of the total growing season, and hence
the prediction is likely to be more accurate, but less useful. In Response
Farming, the length of the early period is optimised, i.e. it is made as long as
possible but early enough not to seriously affect the efficacy of tactical
adjustments to crop water demand and yicld potential by thinning or side
dressing with fertiliser. The criteria for Predictor IT are cumulative rainfall and
onset type (Table 1b). Cumulative rainfall in the first 30 or 35 days gives rise to
three classes of season, termed good, fair, and poor (Table 1c).

Agronomic Response Tactics

In developing and discussing Response Farming for Eastern Kenya, Stewart
and Faught (1984) considered three nominal input levels, i.e."conventional” (low
maize population/no fertiliser), "high" (high population/60 units of nitrogen (N)
fertiliser), and a level "medium” in both plant population and N fertility. The
higher levels of plant population in the present study are lower than those used
by Stewart and Faught (1984) and Wafula (1989). Ours are based on the results
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Climatic Risk in Crop Production
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Fig. 1. The relationship between total scasonal rainfall and date of rainy season onset that
provides basis for prediction. Classification into Farly and Late according to Stewart and
Faught (1984).

of optimising the plant population at different N levels reported by Keating ef
al. (1991).

In Response Farming, selection of levels of variable inputs is made at two
stages, namely: (i) at onscl of the rainy season, in response to the forecast of
either good (early) or poor (latc) season (Table 1a); and (ii) at 30 or 35 days
after planting, in response to the forecast of type of scason provided by
cumulative rainfall since onset (Table 1b). In the interest of optimally matching
crop yield potential with season type, options for adjusting production inputs are
kept open as long as possible. Hence plant density is initially high and fertiliser
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Assessing Value of Seasonal Rainfall Predictor

¢ Table 1. Criteria for season type forecasts using two predictors and for classification of actual
season types. Standard day is shown in parenthescs. Source: Stewart and Hash (1982);
Stewart and Faught (1984).

a) Predictor I (P) Earliest date of receipt of 40 mm rain in 8 days”®,

{ Onsel Season Long rains Short rains

forecast

: Early Good 23 Jan (23) - 18 Mar (77) 16 Oct (289) - 2 Nov (306)

!_ Late Poor 19 Mar (78) - 16 Apr (106) 3 Nov (307) - 23 Nov (327)
b) Predictor I1 (I))) Long rains: Short rains:

x Onset Season Rainfall (mm) during Rainfall (mm) during

: forecast 35 days from onset 30 days from onset

Early Good > 147 > 122

' Fair 89 - 147 115 - 122

? Poor < 89 < 115

Late  Good > 234 > 209

Fair 135S - 234 152 - 209

: Poor < 135 < 152

I:..

¢) Actual Rainfall (mm) befween season onset and maize maturity

season fype Long rains Short rains

i

: Good > 280 > 330

i Fair 150 - 280 230 - 330

Poor < 150 < 230

* No more than one day without rain.

e

input low to provide maximum flexibility for tactical adjustments to be made at
the second stage decision point (Table 2c).

METHODS FOR EVALUATING RESPONSE FARMING
The first stage of the analysis concerns how well the predictors predict. The

steps required are largely those in the development of a Response Farming
scheme (Fig. 2). Firstly, (here must be a source of historical rainfall records.
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Climatic Risk in Crop Production

Table 2. The tactical nitgrogen fertilisation and planting/thinning response
Response Farming strategies. P, and Py

a) Set strategies

are defined in Table 1. (NC

Set Plant N fertiliser
strategy (S population
(¢000s ha') (kg ha'h)

S 22 0
S, 27 15
Sy 33 30
Sy 37 45
S 44 60
S, 55 80
S, 55 70

b) Single stage Response Farming strategies using Py

s for various Set and
= no change)

Response Farming Plant N fertiliser
strategy (Ry) population
('000s ha'l) (kg ha'h)
Rl }!;gh ]npuin
z; (Good) 44 o0 )
2, (Poor) 3 30 (1) ,
R, Medium Inputs '
z; (Good) 33 30 (1)
z,(Poor) 33 0 (1)
r
¢) Two-stage Response Farming strategies using Py
Stage 1 Stage 2
Plant N Forecast Thin N
population  fertiliser season population fertiliser
000 ha) (kg ha'l) type 0000 ha'l) (kg ha™)
R, High inputs
z, (Good) 44 30 (1) w,(Good) NC +30
w,(Fair) A1 NC l
w,(Poor) -22 NC
z, (Poor) 44 20 (1) w,(Good) NC +40
w,(Fair) -11 NC
wy(Poor) -22 NC
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Assessing Value of Seasonal Rainfall Predictor

R, Medium inputs

7, (good 33 20 (1) w,(Good) NC +10
1 (o0 " wi(Fair) NC NC
w,(Poor) i-\}l Ng)
z,(poor 33 0 (1, w,(Good) C +
2(poor) (e wi(Fair) RY NC
w,(Poor) -11 NC
4 R As for Ry except highest pop'n 55K and N 30 + 50
R, As for R, except pop'n 55K

Historical rainfall records

v

2 Identify classes of seasonal
rainfal! totals that refate to major classes
of relative yield to define season types

'

Calculate prior probabilities
of season types (P@;))

Y

Explore relations between early
season rainfall attributes and season types
in search of predictor (P(z10))

|

. 5 Use Baves formulato calcnlate

Use-Bayes
posterior probabilities (P@®;lz W) lo
identify provisionally best predictors

. . . i
. Design agronomic tactics (o |
I correspond with various forecasls )

l

e e e v M e e v e e e e e e S

! Fig. 2. Scheme for developing and evatuating a Response Farming rainfall predictor.

In this paper we use data from the Katumani Rescarch Station, ncar Machakos

for 1957-1988. These data were also used by Wafula (1989) and, except for the

last 5 years, by Stewart and Faught (1984). Radiation and temperature data are
! from Wafula (1989).
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Climatic Risk in Crop Production

Step 2 in Fig. 2 rclates grain yield to seasonal rainfall, A procedure for
classifying seasons in Eastern Kenya into good, fair, and poor was given in
Stewart and Hash (1982) and results arc presented in Table 1. Fig. 3 shows
these criteria superimposed on a plot of yield (strategy Ss, Table 2a, simulated
by thie model described below) and scasonal rainfall, The evaluation of predictor
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Fig. 3. The relationship between maize grain yield (Ss,
pes according to Table lc.

maize growing scason. Vertical lines distinguish season ly
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Assessing Value of Seasonal Rainfall Predictor
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Fig. 4. Scheme for assessing the value of a rainfall predictor using a cropping system simulator,
Adapted from Anderson et al. (1977).

performance mainly concerns comparisons of the probabilities shown in steps
3 and 5 in Fig, 2.

The second stage of evaluation concerns the impact of a predictor on
economic performance (Fig. 4). The degree of success depends heavily on the
ability of the model to simulate yicld outcomes of relevant management actions
over the range of scasonal conditions contained in historical rainfall records.
The model used in this study is that described and validated by Keating et al.
(1991) over a wide range of soil water, soil nitrogen, and maize plant densities.
Simulations explained 88% of the variation in grain yicld from 159 experimental
observations (Fig. 3 in Keating ef al. 1991). The 159 observations were mostly
on-station experiments, including some in which water supply was varied using
supplementary irrigation. However, several on-farm experiments which were
researcher-initiated /farmer-managed studies, mainly with varying N fertiliser
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rales and population densities are included. Experiments were also conducted
to test simulation of the effects of delays in thinning and fertilisation on crop
performance (Walula 1989). The soil properties and initial water and mineral
N values at the beginning of each season of each ycar were the same as those
used by Kealing ef al. 1991, except that nitrate concentrations in the top four
layers were 1 ppm lower and organic carbon values were one third lower,

The performance of allernative agronomic stralegics werc compared using
gross margins per heetare. These are calculated by deducting the variable input
costs from gross returns from maize grain produced. Variable costs in the
analysis (expresscd in Kenyan shillings, Ksh) include seed (4 Ksh kg™"), fertiliser
N applied (30 Ksh kg"), and labour for thinning, harvesting, and shelling (3
Ksh h"). The price assumed for N is twice the purchase price to allow for
variable costs of transport, additional weeding due to stimulation of weed
growth, and as a hedge against an omitted cost. One variable cost omitted is
that of amending phosphorus deficiency, a less common problem than N
deficiency. Our main concern here is to avoid underestimating cost of
fertilisation. The assumed sale price of maize grain is 3 Ksh kg™, Unit cost and
price data were kept constant during the period simulated.

PERFORMANCE OF TWO PREDICTORS IN REDUCING UNCERTAINTY

H
1

The analytic [ramework used is that of Bayesian decision theory (Anderson ef
al. 1977). The problem addressed by Response Farming contains all the
components of a decision problem (Anderson ef al. 1977). Any yield-influencing
""""""" action or stralegy chiosen by A farmertms - uncertainronfcotte-in-a-give n yeaE—— e
duc Lo uncertainty about the quantity of rain which will actually fall in that year. ;
However, the frequency distribution of past types of scason provides an
indication of the long-term prospects for production and the probability of
various oulcomes for the pending season. This historical record is termed the :
prior probability distribution, i
Table 3 shows (he Baycs formula calculations for Predictor 1, i.c. date of :
onset only. We are concerned with predicting the occurrence of any of three
states of nature (0;), i.e. good, fair, or poor season {ypes, as defined in Table 1c,
using rules drawn from Tables 1a, 1b. The probabilities of each state occurring,
based on rainfall records for Katumani for the past 32 years, are shown as prior
probabilities (P(8,)). In both long and short rainy seasons, the probability of
either a good or a fair season is each approximately 0.4, and that of a poor
season about 0.2 (Table 3). :
When there is a source of additional information (e.g. P, or Py;) which may
more precisely indicate the type of season pending (a forecast), the performance :
of a predictor in forecasting the various scason types is expressed as likelihoods
or conditional probabilities (Tables 3 and 4; (z]0;). The likelihoods were
calculated from historical daily rainfall data. The P(z,]0;) (i.c. the probability
of forecast 1 [early onset] given a good season) is calculated as the proportion
of years in which early onset (as defined in Table 1) occurred in good seasons
(i.c. the subset of years in which total seasonal rainfall was greater than 280
mm) (Table 1c). The probability of 1.00 for the long rains means that in every
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Assessing Value of Seasonal Rainfall Predictor

Table 3. Bayesian probabilities for forecasts using date of onset (Predictor 1) at Katumani
Research Station from 1957 to 1988.

Long rains Short rains
Early onset (z,) Early onset (z;)
Probabilities Probabilities

State Prior Likelihood Joint Posterior Prior Likelihood Joint Posterior

6, P(0) P |f) P@ul) P@lz) PEA)  Plyll) Pi,0) P(O]z)
Good 0.37 1.00 0.37 0.65 0.40 0.72 0.29 0.53
Fair 0.41 0.42 0.17 0.29 0.44 0.50 0.22 040
Poor 0.21 0.17 0.03 0.05 0.15 0.25 0.04 0.07

1.00 Pz, ) =057 1.00 1.00 P(z)) =055 1.00
Long rains Short rains
Late onset (z,) Late onset (z,)

g, P P(ml8)  Peu0) Pz  PE) Pl Peuf) Pllz)
Good 0.37 0.00 0.00 0.00 0.40 0.27 0.11 0.25
Fair 041 0.58 0.24 0.58 044 0.50 0.22 0.50
Poor 0.21 0.83 0.17 042 0.15 0.75 0.11 0.25

1.00 P(z, ) =041 1.00 1.00 P(z;) = 0.44 1.00

season classified as good, onset occurred early. To quickly dispell the impression
of early onset being a perfect predictor, note that carly onset occurred in 42%
of the fair seasons and 17% of the poor seasons as well.

The second stage in Predictor I is a forecast made possible by an
experiment, which is the monitoring of cumulative rainfall for the 30 or 35 days
following onset. In evalualing each weather predictor, the likelihoods of each
forecast possibility (P(z,]8,)) are multiplied by the prior probabilities (P(8)))
to calculate their joint probabilities (P(z,, 8,)). Division by the total probabilities
(P(z) for the given forecast provides the posterior probabilities (P(6;]z)). It is
the probability of each type of season, given a specific forecast. This is the best
estimate for the coming scason, given the historical information and the
forecast, and provides the logical probabilities on which to base tactical
decisions. The revision of probabilities of events in the light of new information
is the exceptional contribution of Bayesian decision theory.

The value of distinguishing between early and late onset in forecasting
season type can be seen by comparing the prior probabilities with the posterior
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probabilitics in Table 3. Without considering onset date, the probability of a
“long rains’ good season is 0.37. Recognition of an early onsct "forecast"
increases the probability of a good season to 0.65, and reduces the probability
of a fair scason from 0.41 to 0.29. There are low probabilities (0.05 for long
rains and 0.07 for short rains) for an early onsct being followed by a poor
season. A late onset is a less accurate predictor of a poor season, although there
is a low probability of a good scason with a late onsct,

Table 4 shows the Bayesian probabilities for Predictor II, The joint
probabilities as well as the prior probabilitics are the same as in Table 3.
Comparisons of the posterior probabilities with those of Predictor I show that,
in general, Predictor II substantially reduces uncertainly in seasonal rainfall
compared to Predictor 1 (onsct alone). Although therc is a 0.26 (long rains) and
0.29 (short rains ) probability that a forecast of a good scason is followed by a
fair season, the probability of a poor season following a good forecast is zero
(based on this 32 year period). A poor season was predicted little better by
Predictor Il than by Predictor 1.

The forecasting rules used here are those devised by Stewart (1988), and it
is clear that their use materially reduces uncertainty. However, this is of
cconomic value only if it results in different decisions with superior, more
risk-efficient, cutcomes, and this is the subject of the following section.

Table 4. Bayes formula calculations using forecasts from the rainfall experiment (Predictor 11).
(Joint probabilities are given in Table 3).

El
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Long rains Short rains
Probabilities Probabilities
Forecast  State Prior Likelihood Posterior Prior Likelihood Posterior
prediction {; P) P8y P lwy PE) Pl P(f,|w)
Good {i=1) 037 0.72 0.74 0.40 091 %!
Good Fair (i=2) 0.41 0.23 . .26 0.44 033 0.29
(k=1) Poor (i=3) 0.21 0.00 0.00 0.15 0.00 0.00
Good (i=1) 0.37 0.90 0.14 040 0.00 0.00
Fair Fair (i=2) o041 0.46 0.86 0.44 0.25 0.58
(k=2) Poor {(i=3) 0.21 0.00 0.00 0.15 0.50 042
Good (i=1) 0.37 0.18 0.15 0.40 0.09 0.13
Poor Fair (i=2) 041 0.31 0.32 044 041 0.60
(k=3) Poor (i=3) 0.21 1.00 0.52 0.15 0.50 0.27
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Assessing Value of Seasonal Rainfall Predicior

EFFECTS OF A WEATHER PREDICTOR ON ECONOMIC RETURNS AND
RISK

This section compares several strategies for allocating yield-improving variable
inputs. These strategies are shown as a "decision tree” in Fig. 5. A decision tree
has decision nodes (shown as squares) and event nodes (circles). Primary
interest is in the Response Farming strategy using Py, but as in the previous
section, inclusion of P, allows the analysis to distinguish the forecasting
contribution of w, (using the amount of rain in the 30 or 35 days from onset, as
in Table 2) from that of z, (early or late onset). The simulation model makes
the conditional decisions relating fo these according to the information in Tables
1 and 2. The six Response Farming Strategies (R, - R,) were combinations of
P, and P, with different levels of maximum inputs, as in Table 2.

The reference point for the value of a within-season predictor is the
performance of the optimal strategy that does not use such a predictor, i.e. that
for which the prior probabilities of season type (Tables 3 and 4) provide the
only predictor to guide variable fertiliser application and associated plant
population density. Since the prior probability is essentially the same from year
to year, allocation strategies can be predetermined. To find the optimal
predetermined (Set) strategy (S), six serial fertiliser/plant population
combinations were compared (Fig. 5).

R3, R4, R4Rg

Fig. 5. A decision tree for alternative maize produclion strategies. Sct strategies (S) and Response
Farming strategies (R) are defined in Table 2. [ indicate decisions; o indicate the influence
of weather/climate. Predictors (P) and forecasts (z,w) are defined in Table 1. Input responses
(I, 1), provisional input responses (', I ') and tactical responses to forecast w, are
defined in Table 2. The dotted branch (PI) is included as a test of season onset alone as a
predictor.
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Clintatic Risk in Crop Production

It can be seen from Table 2 that there is no low-input Response Farming
level comparable to the lowest Set strategy. This is because Response Farming
is a decision system for minimising the marginal risk associaled with using
fertiliser and associated variable inputs to increase yields, Improved capability
to match inputs with the quality of the season can have little benelit, if input

levels are invariably low.

The average yields and gross margins of allernative set strategies are shown
in Fig, 6. Although average yields increased with even the highest inputs, gross
margins were highest for strategies S, and S; in the long rains and with S, in the
short rains. This, however, takes no account of the risk performance of these set

input strategies.

Cost and gross margin
(Ksh 10001)
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Fig. 6. Average yiclds, costs, and gross margins in long and short rainy seasons for six levels of
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A more informative picture of the effect of sclected set strategies on yields
and gross margins can be seen in Figs 7 and 8. The cumulative distribution
functions of yield (Fig. 7) show the increased yield variability with higher inputs
when yields do not increase in response to inputs in poor seasons. In fact, there
is an indication of inputs reducing yield in poor seasons, especially in the short
rains (i.e. the cumulative probability curves cross over). Poor seasons occur at
Katumani with a probability of about 0.25 in the long rains and greater than
0.40 in the short rains, Substantial financial losses occur in these seasons if
strategies with high variable inputs are used (Fig. 8). However, in the

- -

complementary class of better seasons, responses to the first increment of inputs
(8;) are quite spectacular.
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Fig. 7. Cumulative distribution functions for grain yield for S, S,, S5, and for the optimal
Response Farming strategy in the long and short rains (stralegies are defined in Table 2).
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Response Farming strategy in the long and short rains (strategies are defined in Table 2).

All farmers choose to take risks in order to gain greater returns, but they
differ quantitatively in their atfitudes toward risk (i.e. in their position on a
spectrum from strongly risk averse, through risk neutral, to risk preferring).
Case studies of the behaviour of farmers in Eastern Kenya indicate that virtually
all farmers studied are at least moderately risk averse (Ockwell et al. 1991).

Recent research by L. Mohammed (unpubl. data) has quantified attitudes
of a number of these farmers towards risk associated with using fertiliser and
improved seed. Fig. 9 shows the utility curve for a "typical’ farmer. This curve
is an average of curves clicited from five farmers near Katumani using the
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Equally Likely Certainty Equivalents method (Anderson ef al. 1977). The
method uses a game in which the interviewee is presented with a series of 50/50
lotteries covering a range of average monctary outcomes, in this case as actual
quantities of fertiliser and seed. The procedure identifies the Certainty
Equivalent (CE) for cach Iottery as the smallest value of a "gift" which he would
prefer to a gamble for the larger amount, with a 50% chance of losing. The
straight line in Fig. 9 represents the monetary values of the hypothetical 50/50
lotteries, i.e. the utility curve of a risk-neutral decision maker, For a given level
of utility, the horizontal difference in monctary value between the two curves
(d) is the "risk premium®, ie. the difference between the gift and the average,
or expected, value of the gamble. This can be viewed as the cost of reducing risk
to a tolerable level, or the increase in certain monetary return required to make
a risk-averse farmer accepl a risky prospect. In our analysis, the curve of Fig,
9 is used to transform gross margins to-utility.
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Fig. 9. A utility curve based on the average of five such curves of information eficited from
selected farmers in Eastern Kenya using the Equally Likely Certainty Equivalent (CE)
method. The straight line is the risk-neutral utility curve, and "d" is the risk premium,

Expected, or average, utility provides an index for ranking actions or
strategics that combines the performance criteria of financial returns and risks.
In the usual situation where performance data arc scarce, expected utility must
be calculated using elicited subjective probabilities for various classes of
outcomes to derive a probability-weighted overall mean outcome. Here, since
performance outcomes for all strategies in all years are simulated, average
utilities for six set strategies can be calculated directly (Table 5). In both long
and short rainy seasons, the strategy with maximum average utility, and thus the
optimal strategy, is S,, although it is only marginally superior to S;.
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Table 5. Average costs and utilitics of Set strategies and Response Farming strategies. Optima
are indicated by asterisks, (Strategies are fully described in Table 2.)

Long rains Short rains

Strategy Costs Utility Costs Utility
(Ksh 10 ) (Ksh 10 )

Set
5 22K, ON 0.3 209 0.2 13.0
S, 27K, 15N 1.0 28.5 0.8 17.9
S; 33K, 30N 1.5 30.6 1.3 194
Si 38K, 45N 2.0 3to* 19 19.9 *
Ss 44K, 60N 2.5 300 24 17.9
Se 55K, 80N 32 216 3.0 13.3
Response FFarming
R, High, P, 2.0 329 ** 1.7 21.1
R, Medium, P, 1.0 28.2 0.8 17.6
R, High, Py, i8 317 1.7 222 **
R, Medium, Py, 1.0 ' 29.5 0.9 20.0
Perfect Predictor 390 30.2

Another means of comparing uncertain prospects of alternative choices of
input levels is the so-called Mean-Variance analysis (Fig. 10). This is a valid

relatively symmetrical curves in Fig. 7, indicate that this requirement is met. In
this case, mean gross margins (m) arc plotted against the corresponding
standard deviation of gross margins (o). Curves a-b (long rains) and c-d (short
rains) represent scts of risk-efficient strategics comprising those strategies which
dominate others by virtue of their higher m or lower o. Any optimal strategy for
the respective seasons must lic on this "cfficiency frontier”. The horizontal line
e-f represents the choice criterion of a hypothetical farmer who is indifferent to
risk. Drawn tangent to the efficiency frontier, a-b, the optimal Set strategy for
this risk-neutral farmer is the onc with the highest average profits, i.e. S (Ss
entailed 44,000 plants ha” and 60 Kg ha? nitrogen (Table 2a)). A line similarly
drawn for the short rains would identify the risk-neutral optimum between S,
and S;. This method identified the same optima as those generating the highest
average gross margins in Fig. 0.

To many, using the concept of expected utility scems an abstract way of
approaching the problem of assessing risky farm management choices.
Additionally, it is not generally feasible to transform a utility curve into
mean-variance or mean-standard deviation (m-o) space as employed in Fig. 10
(3. R. Anderson pers. comm.). Binswanger and Sillers (1983) noted that the
results of a number of published studies conducted in developing countries
using experimental games of chance to clicit farmers’ revealed preferences for
taking risks, suggested the vast majority of them had moderate degrees of
aversion to risk. The studies cited were conducted in India (Binswanger 1980),
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Mean gross margin (Ksh 1000°%)

Standard deviation of gross margin (Ksh 1000')

Fig—10.The-values-of -various—strategies-depicted-in-Mean=Standard-Deviation(my=o)-space:
Strategies differ in levels of inputs and use of a weather predictor as per Table 2. Curves are
identified in text.

El Salvador (Walker 1980), Thailand (Grisley 1980) and the Philippines (Sillers
1980). Binswanger and Sillers (1983) demonstrate that there is a surprising
degree of cross-cultural homogeneity in revealed farmer risk preferences in
these studies when the stakes ranged from the current daily wage, up to about
three months’ wages,

Ryan (1984) suggests that these studies imply a rule-of-thumb of 2:1 as the
slope of an iso-utility, or indifference, line reflecting the revealed attitudes of
small farmers to incurring added risk versus extra profits or gross margins. The
typical farmer would move left to right along efficiency frontiers, such as ¢-d and
a-b in Fig, 10 as long as the increased standard deviation of gross margins is no
more than twice as large as the increase in the mean gross margin, Hence, the
2:1 ratio of Ac/Am represents the (inverse) slope of the tangent of the point
where an indifference curve just touches the efficiency frontier, Barah ef al,
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(1981) used this 2:1 rule to rank sorghum cultivars for their yield and
stability/adaptability from multi-location and multi-year trials in India.

We employ a similar rule in Fig, 10, where the line g-h has a co-tangent of
2:1. The typical farmers’ level of utility or satisfaction would be maximised by
operating on that part of the efficiency frontier where a 2:1 indifference line is
just at a tangent to it. The higher the indifference line attainable, the greater
the level of farmer utility, and the point of tangency is the highest attainable.

Using this 2:1 indifference line, the optimal Set strategy is indicated at "O"
and "O'" for long and short rains. In the long rains, a farmer with the level of
risk aversion expressed in the 2:1 line would prefer S, (average profits of about
6,500 Ksh ha" achievable with a little more than 33K plants and 30 kg N ha™)
to S (7,000 Ksh ha* which requires 44K plants and 60 kg N ha™"). The optimal
strategy in the short rains is just above S, (27K plants and 15 kg N ha returning
3,300 Ksh) but, because a major segment of the efficiency frontier is nearly
parallel to the indifference curve, S, has little advantage over S, Because the
long rains cfficiency frontier, a-b, has more curvature than that for the
short-rains (c-d), the optimal strategy is less variant to changes in risk attitudes
for the former than the latter. For example, in the short-rains (c-d) a 50%
increase in the Ag/Am ratio to 3:1 representing less risk aversion would imply
an optimal strategy of near S, rather than §,. In the long rains, a similar
decrease in risk aversion would, at mosl, move the optimum towards S, from
just beyond S,.

Use of the Hypothetical Perfect Predictor

o

— ISl B~ i B v

ey e —

Thus far, we have identified the optimal Set strategy when a lorecast is 10t
available, following the flow diagram sct out in Fig. 4. We resume this progress
towards our goal of assessing the valuc of a Response Farming predictor at the
arrow indicating an affirmative answer to the question in the centre of Fig, 4,
"Is a forecast available at cost, ¢?" The next question in this flow diagram
concerns the value of a predictor if it always provides correct forecasts.
Although no predictor can be expected to do this, if the calculated utility of the
hypothetical perfect predictor (adjusted for any costs) is not greater than the
utility of the prior optimal Set strategy, then clearly there is no reason (o
continue the analysis and the optimal Set strategy should be adopted.

The gross margin outcomes simulated for Response Farming with a perfect
predictor were again transformed using the utility function (Fig. 9), and average
utilities calculated for each strategy over all years for both long and short rains.
It can be seen from Table 5 that average utility with a perfect predictor (39
units) is considerably greater than the optimal Set strategy (31 units). The
outcomes with perfect predictors in long and short rainy seasons are shown in
Fig. 10 as "P" and "P'". Comparison of optimal set strategies (O and O ') with
Response Farming with perfect forecasts shows that perfect forecasts would
substantially increase average gross margins, but with some increase in
variability. A 2:1 iso-utility linc through P (s-1) lies above that of one tangent to
the optimal Set strategy (g-h), indicating that there is a potential utility increase
from using a predictor, and there is reason to continue the analysis of the value
of those which are less than perfect.
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Choosing Optimal Response Farming Strategies

The average utilities for all Response Farming strategies for both rainy seasons
are shown in Table 5. In both rainy scasons, high-input Response Farming
strategies do result in higher average utility than the best Set strategy.

Curves i-j and k-1 in Fig. 10 depict the efficiency frontiers for the Response
Farming strategies with varying inputs and predictors in the long and short
rains, respectively. Indifference lines with a 2:1 slope have again been drawn
tangent to these frontiers, thus identifying the optima as strategy R, for the long
rains and near strategy R, in the short rains. In decision analysis, the optimal
strategy that utilises further information (vis a vis the Set strategy) is termed
the Bayes strategy, and can be expected to have an average utility which lies
between that of the prior optimum (Set strategy) and the Bayesian outcome
using the perfect predictor (Winkler ef al. 1983). By comparing the positions of
the indifference lines, it is clear that the optimal Response Farming (Bayesian)
strategy for both the long and short rains is closer to that of the perfect
predictor than it is to the optimal Set strategy. This attests to the value of
Stewart’s (1988) prediction rules.

The Economic Value of Response Farming

Just how valuable could Response Farming be to a farmer in this district of
Kenya? While average utility provides a single index for ranking the
performance of alternative strategies, because it is dimensionless and of
arbitrary scale, it cannot quantily the value of a predictor. However, differences
between strategies can be quantified by comparing differences in gross margins
between indifference lines at a common level of risk (value of ¢ in Fig, 10).
When this is done at the y axis (o = zero), comparisons are among the CEs of
strategies. Using this method, it can be seen that the average value of the best
Response Farming strategy in the long rains is about 450 Ksh, (i.e. s-g in Fig.
10) or only about 11% higher than the optimal Set strategy. In the short rains,
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the average improvement is about 330 Ksh, or about 18% higher than the
optimal Set strategy where mean gross margin is only 1,800 Ksh.

How good the predictors are can also be judged in relation to the outcome
using the hypothetical perfect predictor. In the long rains, if the prediction of
season type was perfect, the average benefit would be another 300 Ksh, which
is a surprisingly small increment (vertical distance from point P to line s-t). In
the short rains, a perfect predictor would add a further 500 Ksh profit per
season (vertical distances from point P! and line m-n).

Relative to the strategy in which no fertiliser is used (S, in Fig. 10), and
corresponding closely to the practice of most farmers in the region, the benefits
of Response Farming can be partitioned into: (a) the effects of inputs of
fertiliscr and corresponding higher plant populations; and (b) the effects of
more efficient application of inputs due to information (forecasts) about the
seasonal rainfall. In the long rains, the effect of adopting the optimal Set
strategy (near S,) is to increase the CE by 1,400 Ksh (from 2,650 at S)), i.e. by
53%. The optimal Response Farming strategy increased the CE by another 450
Ksh, an additional 11%. In the short rains, the optimal Set strategy (near S,)
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increased the CE by 300 Ksh (from §; = 1,500), i.e. by only 17%. The optimal
Response Farming strategy provided a further increasce of 330 Ksh, or 18%.
Hence it is use of inputs, cspecially in the long rains, that provides the greatest
benefits. The value of the forecast, while not trivial, is modest by comparison.

Comparison of Predictors I and Predictor Il

We expected the two-stage predictor, Py, to be superior to P, (onset date only),
and although this was the case in the short rains (CE of R;>R,), the opposite
occurred in the long rains. Part of the explanation of the latter is that onset
alone is more efficient in predicting a good season in the long rains than in the
short rains (Table 3), and was nearly as good as P, (Table 4). Moreover, there
is a cost of a second stage predictor that, while included in the analysis, is not
apparent. This is the cost of keeping options open for 30 or 35 days. The points
"T" and "T ' * in Fig, 10 are the outcome of a hypothetical scenario, in which the
crop production settings achicved by the second stage agronomic adjustments
(in response to the second stage of Py, information) are imposed with perfect
foresight at the time of planting. The gain in efficiency has two causes. The first
is a cost saving, For example, avoiding the cost of planting a high population for
the contingency that a good scason follows (but doesn’t), plus the additional cost
of thinning to the appropriate population for the fair or poor season forecast at
stage 2. The second is improved biological efficiency of when appropriate plant
populations and N levels are synchronised. Of these two, the first was the more
important; points "B" and "B '" in Fig. 10 represent cascs that differ from "T"

—r

and "T ' " only because costs of Ry were applicd; i€ differences reflect sotely the
effects on the biology of the crop.

Why Are Most Farmers’ Strategies So Far From the Optimum?

If the yield simulator is performing realistically and our analysis of the output

is correct, and if the strategy of most farmers in the district is approximately

represented by S;, why do these farmers forego so much income and satisfaction
by their failure to use fertiliser together with higher plant populations, with or
without Responsc Farming? Four possible explanations are:

(i) The estimated responses in mean gross margins to increases in fertiliser and
plant population are too high;

(if) Farmeérs in the district are much more risk averse than the 2:1 line indicates
and a line of steeper slope properly representing their risk attitudes would
identify S, as the optimal strategy;

(iii) Farmers perceive the m-o efficiency frontiers which they face in maize
production to be much flatter than the fronticr simulated in Fig. 10, i.e. the
slope may be low enough to identify S, as optimal, using the 2:1 iso-utility
curve; and

(iv) Farmers have access to insufficient capital to adopt more optimal strategies.

The first explanation must be accepted to some degree, since the model at

present does not include ihe effects of weeds, insects, or diseases. Neither is the

cost of weeding increased with [ertiliser rate.
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For explanation (ii) to be valid, these farmers would be very much more r@sk
averse than farmers in similar circumstances (Ryan 1984), and much more risk
averse than indicated by the utility curve of the most risk-averse farmer in the
sample of Kenyan farmers. The 2:1 indifference line depicted a somewhat higher
degree of risk aversion than the average utility curve in Fig. 9 (judging by the
differences in optimal strategies selected in Fig. 10 and Table 5). As mentioned
earlier, because of the slight curvature of the efficiency frontier for set strategies
in the short rains, the optimal point is quile sensitive to changes in the
indifference line. Even so, the slope of the indifference line (Ao/Am) would
have to be near 1:1 before S, would appear optimal in either season. This would
} classify these Kenyan farmers as severely risk averse, which in other studies
constituted only 1-3% of those assessed. We would hence tend to reject this
explanation for non-adoption. -

Explanation (iv) must be of some importance. The cost of fertilising in the
optimal Response Farming strategy is equivalent to 60-100 days of labour wages,
and there are no institutions which provide credit for such purposes. On the
other hand, there is no evidence that the majority of farmers use even a small
amount of fertiliser on a small proportion of a field, an outlay which many
could afford, Significantly, the few farmers that we have found using fertiliser
on maize have no doubts about its beneficial effects on their incomes.

} We lean towards explanation (iii) and await with interest the outcome of
current research being carried out to study farmers’ perceptions of their risks,
and income opportunilics as they begin to use fertiliser. Explanations (i) and
(iii) are complementary. Once better information on farmers’ perceptions of
risks is available, sensitivity tests of discounting of simulated yields for pests and
diseases, as well as the inclusion of variable costs of weeding, will be valuable.
Simulated outcomes with realistic discounting, that still result in an efficiency
frontier that has a much stecper slope than one revealed by new information
about farmer perceptions, would indicate that education and demonstration of
the value of using N fertiliser should be an urgent priority . This would be a
striking contrast to the present situation in which local research emphasis is

importance) due to the apparent interpretation by agricultural professionals
that, because few farmers use fertiliser, this technology is not appropriate.

DISCUSSION OF RESPONSE FARMING AND THE KENYAN CASE

One of our aims in this paper was to critically assess the merits of Response
Farming. We believe that the framework of decision analysis greatly aids this.
Stewart’s (1988, 1991) near-avoidance of the decision analysis framework in his
writings may have been intended to protect the reader from unfamiliar concepts
and terminology, but a consequence has been to make Response Farming
appear deceivingly unique and appealing. We view the early work by Stewart
and colleagues as visionary. Our analysis confirms that they developed
remarkably effective forecast criteria for Eastern Kenya. The procedure used to
develop Response Farming, summarised in Fig, 2, is a straight-forward
procedure which uses agroclimatic analyses and Bayesian statistics that enables
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new intra-seasonal information to contribute to multi-stage crop production
decisions. In addition to a clear understanding of Response Farming, potential
users have until now lacked a way of knowing how much attention should be
given to testing and implementing this scheme.

From our analysis, we would conclude that no special action is warranted
at this time. However, both rescarch and extension staff should understand the
concepts, recognise them as basically sound, and consider them relevant to
strategies for increasing production through higher inputs of fertilisers and
higher plant populations under some circumstances. If, however, as is commonly
believed, it is rare for farmers at the low end of the technology/yield spectrum
to move to the economic optimum in one slep, then Fig, 10 indicates that
Response Farming is not likely to be an altainable first step for farmers
currently using S, (no fertiliser). The more important first step for these farmers
is to use moderate inputs of fertiliser, and progressively move toward the
optimal Set strategy. This is superior to using Response Farming with low inputs
(R,, R,). For farmers with a high input/high yield strategy firmly in place and
wishing to extract greater benefits, a strategy which uses high inputs only in
response lo forecasts of good scasonal prospects can be expected to be
attractive. Indeed, we have observed that the few farmers who use relatively
high fertiliser rates split their applications, and apply later portions only when
there is abundant rain in the first few weeks following planting. It may be that
the principles of Response Farming are so generally intuitive that when
conditions are conducive to adoption, no special extension of a formal Response
Farming scheme will be neccssary.

In_a climate where rainfall is highly variable, yields will have much lower
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variability when crops are prevented from reaching water-limited yietds by some
factor (e.g. N) which is even more limiting. Relief of the N constraint resulls in
more efficient use of the water resource, higher average yields and profits, and
higher variability (Fig. 10). Clearly this increase in variability cannot be viewed
as necessarily undesirable. Responsc Farming clearly does provide a strategy
which is superior to an annual application of any set amount of fertiliser, but
this strategy is the optimum in spite of greater variability. Decision analysis
methods, such as the m-¢ framework in Fig. 10 provide a basis for identifying
acceptable trade-offs between profit and. variability. Their value in linking crop
systems simulation to the development of decision aids is readily apparent.
Although we have focused on a small region in Kenya in this paper, the
value of a seasonal rainfall forecast is an issue of global importance. In many
parts of the world, scasonal rainfall forecasts that arc obviously useful to
farmers are unlikely to be provided by metcorological services in the near to
medium future. However, as our analysis for Kenya shows, a forecast can be
wrong, disturbingly often, and yet the predictor can still be economically
valuable. "How valuable?" can be estimated using a crop yield simulation model,
historical rainfall data, and decision analysis procedures as described in Fig. 4.
When the predictor requires weather data not normally recorded, it is more
difficult to determine the likelihoods (conditional probabilitics) needed for
revision of prior probabilities of season types. However, in the case of the
Southern Oscillation Index, historical barometric pressure information enables
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the foreeasts to be made for cach season in retrospect, and the predictor can be
evaluated experimentally (Hammer and Muchow 1991; Cleweltt et al. 1991).

Althoug initiated as an analysis of Response Farming, this study highlights
an issue of yicater importance in Eastern Kenya. The evidence is overwhelming
that, as Ruthenberg (1980) predicted for this type of farming system, soil fertility
has become the major limiting production factor in this climatically risky region.
This preliminary economic analysis indicates that use of fertiliser on appropriate
population densities of maize, with or without Response Farming decision
strategies, may be highly profitable despite the fact that few farmers and
scientists appear to recognise this. Given the severity of the economic and
ecological problems of this region, the intense interest of aid donors in
solutions, and the paucity of other promising technical innovations, this analysis
indicates that a re-assessment of the potential role of N and phosphorus
fertilisers on small farms in Eastern Kenya is warranted. A logical first step
would be a more comprehensive and extended analysis than this one with: (a)
more attention to assessing the costs of adopting these yield-improving practices;
and (b)- analyses for additional locations.

CONCLUSIONS

Although most agricultural scientists are quite unfamiliar with decision analysis,
most of the concepts and methods have been well established for over two
decades. Byerlee and Anderson (1969) and Doll (1971) reported analyses of the
value of weather predictors for crop production conducted with much the same
objective and in much the same analytical framework as ours. What has changed
is the availability of: (i) methods for estimating yield in relation to both
controlied and climatic variables (e.g. dynamic models (Easterling and Mjelde
1987) and simulation models), thus providing more realistic mean-variance (or
m-o) efficiency frontiers; and (ii) more robust estimates of the risk attitudes of
farmers, which can be used to identify the most risk-efficient strategies. Byerlee
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and Anderson (1969) resorted to assuming that South Australian wheat farmers
were risk neutral in order to escape the problem of lack of data on variability
over time as it related to varying input rates. Doll (1971) was limited by
availability of experimental data to conducting an analysis using only scven
years, with a different production function for each year. This data-scarcity
problem contrasts with the readiness with which we were able to generate a
yield value for each relevant action or strategy in both seasons in all years for
which rainfall data exist. This capability was not developed without cost, but the
existence of a robust maize growth model, with its performance validated
clsewhere, greatly reduced the marginal cost of developing a model with
adequate performance in Eastern Kenya, Admittedly, this cost is too high for
most ad hoc economic analyses. However, as analyses which use a valid model
become better appreciated as the key to efficient research for improved
management, the research needed to tailor an existing model to a region is
likely to be increasingly viewed as a priority.
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